แบบจำลองอะตอม
สร้างโดย : นายดนัย ทัดแก้ว
สร้างเมื่อ เสาร์, 18/10/2008 – 22:29
แบบจำลองอะตอม:
เป็นที่ยอมรับกันแล้วว่าสารต่าง ๆ นั้นประกอบด้วยอะตอม แต่อย่างไรก็ตามยังไม่มีผู้ใดเคยเห็นรูปร่างที่แท้จริงของอะตอม รูปร่างหรือโครงสร้างของอะตอมจึงเป็นเพียงจินตนาการหรือมโนภาพที่สร้างขึ้นเพื่อให้สอดคล้องกับการทดลอง เรียกว่า “แบบจำลอง” ซึ่งจัดเป็นทฤษฎีประเภทหนึ่ง แบบจำลองอะตอมอาจเปลี่ยนแปลงไปได้ตามผลการทดลองหรือข้อมูลใหม่ ๆ เมื่อแบบจำลองอะตอมเดิมอธิบายไม่ได้ ดังนั้นแบบจำลองอะตอมจึงได้มีการแก้ไขพัฒนาหลายครั้งเพื่อให้สอดคล้องกับการทดลอง นักวิทยาศาสตร์ได้ใช้กล้องจุลทรรศน์อิเล็กตรอนที่มีกำลังขยายสูงมากร่วมกับคอมพิวเตอร์ และถ่ายภาพที่เชื่อว่าเป็นภาพภายนอกของอะตอม
แบบจำลองอะตอมของดอลตัน
ในปี พ.ศ.2346 (ค.ศ.1803) จอห์น ดอลตัน (John Dalton) นักวิทยาศาสตร์ ชาวอังกฤษได้เสนอทฤษฎีอะตอมเพื่อใช้อธิบายเกี่ยวกับการเปลี่ยนแปลงของสารก่อนและหลังทำปฏิกิริยา รวมทั้งอัตราส่วนโดยมวลของธาตุที่รวมกันเป็นสารประกอบ ซึ่งสรุปได้ดังนี้
1. ธาตุประกอบด้วยอนุภาคเล็ก ๆ หลายอนุภาค อนุภาคเหล่านี้เรียกว่า “อะตอม” ซึ่งแบ่งแยกไม่ได้ และทำให้สูญหายไม่ได้
2. อะตอมของธาตุชนิดเดียวกันมีสมบัติเหมือนกัน เช่น มีมวลเท่ากัน แต่จะมีสมบัติต่างจากอะตอมของธาตุอื่น
3. สารประกอบเกิดจากอะตอมของธาตุมากกว่าหนึ่งชนิดทำปฏิกิริยาเคมีกันในอัตราส่วนที่เป็นเลขลงตัวน้อย ๆ
ทฤษฎีอะตอมของดอลตันใช้อธิบายลักษณะและสมบัติของอะตอมได้เพียงระดับหนึ่ง แต่ต่อมานักวิทยาศาสตร์ค้นพบข้อมูลบางประการที่ไม่สอดคล้องกับทฤษฎีอะตอมของ ดอลตัน เช่น พบว่าอะตอมของธาตุชนิดเดียวกันอาจมีมวลแตกต่างกันได้ อะตอมสามารถแบ่งแยกได้
แบบจำลองอะตอมของทอมสัน
เซอร์ โจเซฟ จอห์น ทอมสัน (J.J Thomson) นักวิทยาศาสตร์ชาวอังกฤษได้สนใจปรากฏการณ์ที่เกิดขึ้นในหลอดรังสีแคโทด จึงทำการทดลองเกียวกับการนำไฟฟ้าของแก๊สขึ้นในปี พ.ศ. 2440 (ค.ศ. 1897) และได้สรุปสมบัติของรังสีไว้หลายประการ ดังนี้
1. รังสีแคโทดเดินทางเป็นเส้นตรงจากขั้วแคโทดไปยังขั้วแอโนด เนื่องจากรังสีแคโทดทำให้เกิดเงาดำของวัตถุได้ ถ้านำวัตถุไปขวางทางเดินของรังสี
2. รังสีแคโทดเป็นอนุภาคที่มีมวล เนื่องจากรังสีทำให้ใบพัดที่ขวางทางเดินของรังสีหมุนได้เหมือนถูกลมพัด
3. รังสีแคโทดประกอบด้วยอนุภาคที่มีประจุลบ เนื่องจากเบี่ยงเบนเข้าหาขั้วบวกของสนามไฟฟ้า
จากผลการทดลองนี้ ทอมสันอธิบายได้ว่า อะตอมของโลหะที่ขั้วแคโทดเมื่อได้รับกระแสไฟฟ้าที่มีความต่างศักย์สูงจะปล่อยอิเล็กตรอนออกมาจากอะตอม อิเล็กตรอนมีพลังงานสูง และเคลื่อนที่ภายในหลอด ถ้าเคลื่อนที่ชนอะตอมของแก๊สจะทำให้อิเล็กตรอนในอะตอมของแก๊สหลุดออกจากอะตอม อิเล็กตรอนจากขั้วแคโทดและจากแก๊สซึ่งเป็นประจุลบจะเคลื่อนที่ไปยังขั้วแอโนด ขณะเคลื่อนที่ถ้ากระทบฉากที่ฉาบสารเรืองแสง เช่น ZnS ทำให้ฉากเกิดการเรืองแสง ซึ่งทอมสันสรุปว่ารังสีแคโทดประกอบด้วยอนุภาคที่มีประจุลบเรียกว่า “อิเล็กตรอน” และยังได้หาค่าอัตราส่วนประจุต่อมวล (e/m) ของอิเล็กตรอนโดยใช้สยามแม่เหล็กและสนามไฟฟ้าช่วยในการหา ซึ่งได้ค่าประจุต่อมวลของอิเล็กตรอนเท่ากับ 1.76 x 10 8 C/g ค่าอัตราส่วน e/m นี้จะมีค่าคงที่ ไม่ขึ้นอยู่กับชนิดของโลหะที่เป็นขั้วแคโทด และไม่ขึ้นอยู่กับชนิดของแก๊สที่บรรจุอยู่ในหลอดรังสีแคโทด แสดงว่าในรังสีแคโทดประกอบด้วยอนุภาคไฟฟ้าที่มีประจุลบเหมือนกันหมดคือ อิเล็กตรอน นั่นเอง ทอมสันจึงสรุปว่า “อิเล็กตรอนเป็นส่วนประกอบส่วนหนึ่งของอะตอม และอิเล็กตรอนของทุกอะตอมจะมีสมบัติเหมือนกัน”
การค้นพบโปรตอน
ในปี พ.ศ. 2409 (ค.ศ. 1866) ออยเกน โกลด์ชไตน์ นักวิทยาศาสตร์ชาวเยอรมัน ได้ทำการทดลองโดยเจาะรูที่ขั้วแคโทดในหลอดรังสีแคโทด พบว่าเมื่อผ่านกระแสไฟฟ้าเข้าไปในหลอดรังสีแคโทดจะมีอนุภาคชนิดหนึ่งเคลื่อนที่เป็นเส้นตรงไปในทิศทางตรงกันข้ามกับการเคลื่อนที่ของรังสีแคโทดผ่านรูของขั้วแคโทด และทำให้ฉากด้านหลังขั้วแคโทดเรืองแสงได้ โกลด์ชไตน์ได้ตั้งชื่อว่า “รังสีแคแนล” (canal ray) หรือ “รังสีบวก” (positive ray) สมบัติของรังสีบวกมีดังนี้
1. เดินทางเป็นเส้นตรงไปยังขั้วแคโทด
2. เมื่อผ่านรังสีนี้ไปยังสนามแม่เหล็กและสนามไฟฟ้า รังสีนี้จะเบี่ยงเบนไปในทิศทางตรงข้ามกับรังสีแคโทด แสดงว่ารังสีนี้ประกอบด้วยอนุภาคที่มีประจุไฟฟ้าเป็นบวก
3. มีอัตราส่วนประจุต่อมวลไม่คงที่ ขึ้นอยู่กับชนิดของแก๊สในหลอด และถ้าเป็นแก๊สไฮโดรเจนรังสีนี้จะมีอัตราส่วนประจุต่อมวลสูงสุด เรียกอนุภาคบวกในรังสีแคแนลของไฮโดรเจนว่า “โปรตอน”
4. มีมวลมากกว่ารังสีแคโทด เนื่องจากความเร็วในการเคลื่อนที่ต่ำกว่ารังสีแคโทด
ทอมสันได้วิเคราะห์การทดลองของโกลด์ ชไตน์ และการทดลองของทอมสัน จึงเสนอแบบจำลองอะตอมว่า
“อะตอมเป็นรูปทรงกลมประกอบด้วยเนื้ออะตอมซึ่งมีประจุบวกและมีอิเล็กตรอนซึ่งมีประจุลบกระจายอยู่ทั่วไป อะตอมในสภาพที่เป็นกลางทางไฟฟ้าจะมีจำนวนประจุบวกเท่ากับจำนวนประจุลบ”
การหาประจุและมวลของอิเล็กตรอน
ในปี พ.ศ.2452 (ค.ศ.1909) รอเบิร์ต แอนดรูส์ มิลลิแกน (Robert Millikan) นักวิทยาศาสตร์ชาวอเมริกา ได้ทำการทดลองชื่อ “การทดลองหยดน้ำมันของมิลลิแกน” (Millikan oil–drops experiment) หาประจุของอิเล็กตรอนได้ มีค่าเท่ากับ 1.6 x 10–19 คูลอมบ์
แบบจำลองอะตอมของรัทเทอร์ฟอร์ด
ในปี พ.ศ.2453 (ค.ศ.1910)เซอร์ เออร์เนสต์ รัทเทอร์ฟอร์ด (Sir Ernest Rutherford) ได้ศึกษาแบบจำลองอะตอมของทอมสัน และเกิดความสงสัยว่าอะตอมจะมีโครงสร้างตามแบบจำลองของทอมสันจริงหรือไม่ โดยตั้งสมมติฐานว่า
“ถ้าอะตอมมีโครงสร้างตามแบบจำลองของทอมสันจริง ดังนั้นเมื่อยิงอนุภาคแอลฟาซึ่งมีประจุไฟฟ้าเป็นบวกเข้าไปในอะตอม แอลฟาทุกอนุภาคจะทะลุผ่านเป็นเส้นตรงทั้งหมดเนื่องจากอะตอมมีความหนาแน่นสม่ำเสมอเหมือนกันหมดทั้งอะตอม”
เพื่อพิสูจน์สมมติฐานนี้ รัทเทอร์ฟอร์ดได้ทำการทดลองยิงอนุภาคแอลฟาไปยังแผ่นทองคำบาง ๆ โดยมีความหนาไม่เกิน 10–4 cm โดยมีฉากสารเรืองแสงรองรับ ปรากฏผลการทดลองดังนี้
1. อนุภาคส่วนมากเคลื่อนที่ทะลุผ่านแผ่นทองคำเป็นเส้นตรง
2. อนุภาคส่วนน้อยเบี่ยงเบนไปจากเส้นตรง
3. อนุภาคส่วนน้อยมากสะท้อนกลับมาด้านหน้าของแผ่นทองคำ
ถ้าแบบจำลองอะตอมของทอมสันถูกต้อง เมื่อยิงอนุภาคแอลฟาไปยังแผ่นทองคำบาง ๆ นี้ อนุภาคแอลฟาควรพุ่งทะลุผ่านเป็นเส้นตรงทั้งหมดหรือเบี่ยงเบนเพียงเล็กน้อย เพราะอนุภาคแอลฟามีประจุบวกจะเบี่ยงเบนเมื่อกระทบกับประจุบวกที่กระจายอยู่ในอะตอม แต่แบบจำลองอะตอมของทอมสันอธิบายผลการทดลองของรัทเทอร์ฟอร์ดไม่ได้ รัทเทอร์ฟอร์ดจึงเสนอแบบจำลองอะตอมขึ้นมาใหม่ดังนี้
การอธิบายโครงสร้างอะตอมด้วยแบบจำลองอะตอมของรัทเทอร์ฟอร์ด
จากแบบจำลองอะตอมของรัทเทอร์ฟอร์ดสามารถอธิบายได้ว่า เมื่อผ่านอนุภาคแอลฟาซึ่งมีประจุบวกและมวลมากให้เดินทางเป็นเส้นตรงไปยังแผ่นทองคำ อนุภาคแอลฟาส่วนมากจะเคลื่อนที่ผ่านไปยังที่ว่างซึ่งมีอิเล็กตรอนเคลื่อนที่อยู่ แต่อิเล็กตรอนมีมวลน้อยมากจึงไม่มีผลต่อการเคลื่อนที่ของอนุภาคแอลฟา อนุภาคแอลฟาบางส่วนที่เคลื่อนที่ใกล้นิวเคลียสทำให้เบี่ยงเบนออกจากที่เดิม และอนุภาคที่กระทบกับนิวเคลียสซึ่งมีประจุบวกและมวลมากจึงสะท้อนกลับ การที่อนุภาคแอลฟาจำนวนน้อยมากสะท้อนกลับทำให้เชื่อว่านิวเคลียสมีขนาดเล็กมาก
แบบจำลองอะตอมของโบร์
คลื่นและสมบัติของแสง
จากแบบจำลองอะตอมของรัทเทอร์ฟอร์ดทำให้ทราบถึงการจัดโครงสร้างของอนุภาคต่าง ๆ ในนิวเคลียส แต่ไม่ได้อธิบายว่าอิเล็กตรอนรอบนิวเคลียสอยู่ในลักษณะใด นักวิทยาศาสตร์ในลำดับต่อมาได้หาวิธีทดลองเพื่อรวบรวมข้อมูลเกี่ยวกับตำแหน่งของอิเล็กตรอนที่อยู่รอบนิวเคลียส วิธีหนึ่งก็คือการศึกษาสมบัติและปรากฏการณ์ของคลื่นและแสง แล้วนำมาสร้างเป็นแบบจำลอง
คลื่นชนิดต่าง ๆ เช่น คลื่นแสง คลื่นเสียง มีสมบัติสำคัญ 2 ประการ คือ ความยาวคลื่นและความถี่
คลื่นแสงเป็นคลื่นแม่เหล็กไฟฟ้าที่มีความถี่และความยาวคลื่นต่าง ๆ กัน ดังรูปต่อไปนี้
แสงที่ประสาทตาคนรับได้เรียกว่า “แสงที่มองเห็นได้” (visible light) ซึ่งมีความยาวคลื่นอยู่ในช่วง 400 – 700 nm แสงในช่วงคลื่นนี้ประกอแสงที่ประสาทตาคนรับได้เรียกว่า “แสงที่มองเห็นได้” (visible light) ซึ่งมีความยาวคลื่นอยู่ในช่วง 400 – 700 nm แสงในช่วงคลื่นนี้ประกอบด้วยแสงสีต่าง ๆ กัน ตามปกติประสาทตาของคนสามารถสัมผัสแสงบางช่วงคลื่นที่ส่องมาจากดวงอาทิตย์ได้ แต่ไม่สามารถแยกเป็นสีต่าง ๆ จึงมองเห็นเป็นสีรวมกันซึ่งเรียกว่า “แสงขาว”
สเปกตรัม
ถ้าให้แสงอาทิตย์ซึ่งเป็นแสงขาวส่องผ่านปริซึม แสงขาวจากดวงอาทิตย์จะแยกออกเป็นแสงสีรุ้งต่อเนื่องกัน เรียกว่า “สเปกตรัมของแสงขาว”
สเปกตรัมของแสงขาวที่ส่องผ่านปริซึม
สเปกตรัมของแสงขาวเกิดจากการที่เมื่อแสงซึ่งมีความยาวคลื่นต่าง ๆ กันผ่านไปยังปริซึม แสงจะหักเหได้ไม่เท่ากัน เกิดเป็นแถบสีรุ้งต่อเนื่องกัน โดยมีความยาวคลื่นในช่วงต่าง ๆ ดังนี้
สเปกตรัม | ความยาวคลื่น (nm) |
แสงสีม่วง แสงสีคราม–น้ำเงิน แสงสีเขียว แสงสีเหลือง แสงสีแสด (ส้ม) แสงสีแดง | 400 – 420 420 – 490 490 – 580 580 – 590 590 – 650 650 – 700 |
ความยาวคลื่น หมายถึง ระยะทางที่คลื่นเคลื่อนที่ครบ 1รอบ มีหน่วยเป็นเมตร (m) และนาโนเมตร (nm)
ความถี่ของคลื่น หมายถึง จำนวนรอบของคลื่นที่เคลื่อนที่ผ่านจุดใดจุดหนึ่งในเวลา 1 วินาที มีหน่วยเป็นรอบต่อวินาที (s–1)หรือเรียกชื่อเฉพาะว่า “เฮิรตซ์”(Hz)
ความยาวคลื่นและความถี่ มีความสัมพันธ์กันดังนี้ c = ln
ในปี ค.ศ. 1900 มักซ์ พลังค์ (Max Plank)นักวิทยาศาสตร์ชาวเยอรมัน ได้แสดงให้เห็นว่าแสงหรือคลื่นแม่เหล็กไฟฟ้าจะให้พลังงานเป็นหน่วย ๆ เรียกว่า “quantum” (ควอนตัม) และได้ข้อสรุปเกี่ยวกับพลังงานของคลื่นแม้เหล็กไฟฟ้ากับความถี่ของคลื่นนั้นว่า “พลังงานของคลื่นแม่เหล็กไฟฟ้าจะเป็นสัดส่วนโดยตรงกับความถี่ของคลื่น”
E a n
E = hn ………..(1)
เมื่อ E คือ พลังงาน มีหน่วยเป็นจูล (J)
h คือ ค่าคงที่ของพลังค์ มีค่าเท่ากับ 6.626 x 10-34 จูลวินาที (Js)
n คือ ความถี่ของคลื่นแม่เหล็กไฟฟ้า มีหน่วยเป็นเฮิรตซ์ (Hz) หรือ s–1
แต่จาก c = ln
แทนค่าในสมการ (1) ………..(2)
c คือ ความเร็วของแสงในสุญญากาศ = 3.0 x 108 m/s
สเปกตรัมของอะตอม (atomic spectrum)
คลื่นแม่เหล็กไฟฟ้าในช่วงแสงขาวประกอบด้วยแสงที่มีความยาวคลื่นหลายค่าซึ่งเราไม่สามารถแยกส่วนประกอบของคลื่นต่าง ๆ ออกจากกันด้วยตาได้ ต้องใช้เครื่องมือช่วย เช่น ปริซึม หรือสเปกโตรสโคป (spectroscope) เมื่อเราผ่านแสงสีขาวหรือแสงสีต่าง ๆ ไปยังปริซึม แสงจะแยกออกมาเป็นแถบสีต่าง ๆ เรียงกันตามความยาวคลื่น แถบสีที่แยกออกมาได้เรียกว่า สเปกตรัม
แบ่งเป็น 2 ประเภท ดังนี้
1. สเปกตรัมแบบต่อเนื่อง (continuous spectrum) จะเป็นสเปกตรัมที่ประกอบด้วยแสงที่มีความยาวคลื่นและความถี่ต่อเนื่องจนเห็นเป็นแถบ ได้แก่ สเปกตรัมของแสงขาวซึ่งจะเห็นเป็นแถบสีรุ้งเรียงต่อกัน โดยแสงสีม่วงหักเหมากที่สุด มีความยาวคลื่นสั้น แต่มีพลังงานมากที่สุด ในขณะที่แสงสีแดงจะหักเหน้อยที่สุด มีความยาวคลื่นยาวที่สุด และมีพลังงานน้อยที่สุด
2. สเปกตรัมแบบไม่ต่อเนื่องหรือแบบเส้น (Discontinuous spectrum or Line spectrum) เป็นสเปกตรัมที่ประกอบด้วยเส้นสเปกตรัมที่มีความยาวคลื่นบางค่าเว้นระยะเป็นเส้น ๆ บนพื้นดำ
เนื่องจากสเปกตรัมแต่ละเส้นเป็นคลื่นแม่เหล็กไฟฟ้า เราจึงสามารถคำนวณหาค่าพลังงานของเส้นสเปกตรัมแต่ละเส้นได้จากสมการ
นักวิทยาศาสตร์ได้ศึกษาเส้นสเปกตรัมที่เกิดจากการเผาสารประกอบและธาตุบางชนิด โดยนำสารประกอบมาเผา แล้วสังเกตสีของเปลวไฟที่เกิดขึ้น ส่องดูสีของเปลวไฟด้วยสเปกโตรสโคป เพื่อศึกษาสเปกตรัมที่ได้ ซึ่งสรุปได้ว่า
1. สารประกอบของโลหะชนิดเดียวกันจะให้สีเปลวไฟสีเดียวกัน และได้เส้นสเปกตรัมซึ่งเป็นแบบเฉพาะ นั่นคือ มีสีและตำแหน่งของเส้นสเปกตรัมเหมือนกัน ดังตัวอย่างในตาราง
ตัวอย่างสีของเปลวไฟที่ได้จากการเผาสารประกอบ
ตารางแสดงสีของเปลวที่เกิดจากการเผาสารประกอบ
สารประกอบ | ตัวอย่าง | สีของเปลวไฟ |
ลิเทียม | LiCl , LiNO3 , Li2CO3 | สีแดง |
โซเดียม | NaCl , Na2SO4 , Na2CO3 | สีเหลือง |
โพแทสเซียม | KCl , K2SO4 , KNO3 | สีม่วง |
รูบิเดียม | RbCl , Rb2SO4 , RbNO3 | สีแดงเข้ม |
ซีเซียม | CsCl , Cs2SO4 , CsNO3 | สีฟ้า |
แคลเซียม | CaCl2 , CaSO4 , Ca(NO3)2 | สีแดงอิฐ |
แบเรียม | BaCl2 , BaSO4 , Ba(NO3)2 | สีเขียวแกมเหลือง |
ทองแดง | CuCl2 , CuSO4 , Cu(NO3)2 | สีเขียว |
สารประกอบของโลหะต่างชนิดกันอาจจะมีสีของสเปกตรีมคล้ายกัน แต่จะมีตำแหน่งของเส้นสเปกตรัมต่างกันเป็นแถบเฉพาะของโลหะนั้น ๆ ดังนั้นจึงสามารถใช้สีของเปลวไฟและเส้นสเปกตรัมในการวิเคราะห์องค์ประกอบของสารได้ โดยนำสารประกอบนั้นไปเผา แล้วนำสีของเปลวไฟและเส้นสเปกตรัมที่ได้เปรียบเทียบกับผลการทดลองที่นักวิทยาศาสตร์ได้สรุปไว้แล้ว การวิเคราะห์สารวิธีนี้เรียกว่า “Flame test”
2. ในการเผาสารประกอบ องค์ประกอบส่วนที่เป็นอโลหะจะให้สเปกตรัมในช่วงที่ตาเรารับไม่ได้ จึงมองไม่เห็นเส้นสเปกตรัม
3. ในการศึกษาสเปกตรัมของธาตุที่เป็นแก๊สจะนำแก๊สไปบรรจุหลอดแก้วที่มีความดันต่ำ และผ่านกระแสไฟฟ้าศักย์สูงเข้าไปแทนการเผาด้วยความร้อน เมื่อแก๊สได้รับพลังงานไฟฟ้าจะปล่อยแสงเป็นสเปกตรัมลักษณะเฉพาะของธาตุนั้น ๆ และธาตุอโลหะบางชนิดก็ให้แสงที่ตารับได้ เช่น He , Ne , Ar เป็นต้น
สเปกตรัมเกิดได้อย่างไร
สถานะพื้น (ground state)
หมายถึงอะตอมที่อิเล็กตรอนซึ่งเคลื่อนที่อยู่รอบนิวเคลียสมีพลังงานเฉพาะตัวอยู่ในระดับพลังงานต่ำ อะตอมในสถานะพื้นจะมีความเสถียรเนื่องจากมีพลังงานต่ำ
สถานะกระตุ้น (excited state)
หมายถึงอะตอมที่ได้รับพลังงานเพิ่มขึ้น ทำให้อิเล็กตรอนถูกกระตุ้นให้อยู่ในระดับพลังงานสูงขึ้น ที่สถานะกระตุ้นอะตอมจะไม่เสถียร เนื่องจากมีพลังงานสูง
อะตอมที่ได้รับพลังงาน เช่น จากการเผา หรือจากกระแสไฟฟ้า อิเล็กตรอนจะเปลี่ยนจากสถานะพื้นไปสู่สถานะกระตุ้นซึ่งไม่เสถียร จึงต้องคายพลังงานออกมา ซึ่งพลังงานที่คายออกมาจะอยู่ในรูปพลังงานแสงหรือคลื่นแม่เหล็กไฟฟ้า เมื่อผ่านปริซึมหรือสเปกโตรสโคปจะแยกแสงออกเป็นเส้นสเปกตรัม
การที่ธาตุแต่ละชนิดให้เส้นสเปกตรัมออกมาหลายเส้น แสดงว่าอิเล็กตรอนที่อยู่รอบนิวเคลียสมีหลายระดับพลังงาน ระดับพลังงานที่อยู่ใกล้นิวเคลียสจะมีพลังงานต่ำ ส่วนระดับพลังงานที่อยู่ห่างนิวเคลียสจะมีพลังงานสูง เมื่ออิเล็กตรอนคายพลังงานอาจคายพลังงานได้หลายช่วงความยาวคลื่น จึงมองเห็นเส้นสเปกตรัมได้หลายเส้น
นักวิทยาศาสตร์ได้ศึกษาสเปกตรัมของแก๊ส เพราะว่ามีอะตอมอยู่ห่างกัน และใช้อะตอมไฮโดรเจนเนื่องจากมี 1 อิเล็กตรอน พบว่ามีเส้นสเปกตรัมที่ปรากฏในช่วงความยาวคลื่นที่มองเห็นได้โดยมีความยาวคลื่น 410 , 434 , 486 และ 656 นาโนเมตร ตามลำดับ นอกจากนี้การศึกษาเส้นสเปกตรัมของอะตอมของธาตุอื่นๆ ก็พบว่าอิเล็กตรอนในอะตอมของแต่ละธาตุคายพลังงานได้บางค่า และมีเส้นสเปกตรัมเฉพาะตัวไม่ซ้ำกัน โดยเส้นสีแดงมีพลังงานต่ำสุด (3.02 x 10–22 kJ) และเส้นสีม่วงมีพลังงานสูงสุด (4.48 x 10–22 kJ)
การที่นักวิทยาศาสตร์ใช้อะตอมของไฮโดรเจนเป็นตัวอย่างในการแปลความหมายของเส้นสเปกตรัม เพราะเป็นอะตอมที่มีอิเล็กตรอนเดียว จากการทดลองหลายครั้งพบว่าอะตอมของไฮโดรเจนให้เส้นสเปกตรัมได้หลายเส้นที่มีลักษณะเหมือนกันทุกครั้ง จึงสรุปได้ว่าอิเล็กตรอนในอะตอมของไฮโดรเจนขึ้นไปอยู่ในสถานะกระตุ้นที่มีพลังงานแตะต่างกันได้หลายระดับ ค่าพลังงานของเส้นสเปกตรัมแสดงให้เห็นถึงการเปลี่ยนระดับพลังงานของอิเล็กตรอนในอะตอมจากระดับพลังงานสูงมายังระดับพลังงานต่ำ
Lyman series เป็นอนุกรมของเส้นสเปกตรัมของอะตอมไฮโดรเจน ซึ่งแสดงการเปลี่ยนแปลงพลังงานระหว่างสถานะพื้นกับสถานะกระตุ้น
ตารางแสดงความยาวคลื่นและพลังงานของเส้นสเปกตรัม
เส้นสเปกตรัม | ความยาวคลื่น | พลังงาน (KJ) | ผลต่างพลังงานของ เส้นสเปกตรัมที่อยู่ถัดกัน |
สีม่วง | 410 | 4.84 x 10–22 | |
2.7 x 10–23 | |||
สีน้ำเงิน | 434 | 4.57 x 10–22 | |
4.9 x 10–23 | |||
สีน้ำทะเล | 486 | 4.08 x 10–22 | |
10.6 x 10–23 | |||
สีแดง | 565 | 3.02 x 10–22 |
จากข้อมูลในตาราง แสดงว่าอะตอมของไฮโดรเจนมีพลังงานหลายระดับและความแตกต่างระหว่างพลังงานของแต่ละระดับที่อยู่ถัดไปก็ไม่เท่ากัน ความแตกต่างของพลังงานจะมีค่าน้อยลงเมื่อระดับพลังงานสูงขึ้น จากเหตุผลที่อธิบายมานี้ช่วยให้สรุปได้ว่า
1. เมื่ออิเล็กตรอนได้รับพลังงานในปริมาณที่เหมาะสม อิเล็กตรอนจะขึ้นไปอยู่ในระดับพลังงานที่สูงกว่าระดับพลังงานเดิม แต่จะอยู่ในระดับใดขึ้นกับปริมาณพลังงานที่ได้รับ การที่อิเล็กตรอนขึ้นไปอยู่ในระดับพลังงานใหม่ทำให้อะตอมไม่เสถียร อิเล็กตรอนจะกลับมาอยู่ในระดับพลังงานที่ต่ำกว่า ซึ่งในการเปลี่ยนตำแหน่งนี้อิเล็กตรอนจะคายพลังงานออกมา การดูดหรือคายพลังงานจะต้องมีค่าเฉพาะตามทฤษฎีของพลังค์ โดยค่าต่ำสุดจะเท่ากับความถี่ของอิเล็กตรอนนั้นคูณด้วยค่าคงที่ของพลังค์
2. การเปลี่ยนระดับพลังงานของอิเล็กตรอนไม่จำเป็นต้องเปลี่ยนไปยังระดับพลังงานที่อยู่ติดกันอาจมีการเปลี่ยนข้ามระดับได้ แต่เมื่ออิเล็กตรอนรับพลังงานแล้วจะขึ้นไปอยู่ระหว่างระดับพลังงานไม่ได้ จะต้องขึ้นไปอยู่ในระดับใดระดับหนึ่งเสมอ
3. ผลต่างของพลังงานระหว่างระดับพลังงานต่ำจะมีค่ามากกว่าผลต่างของพลังงานระหว่างระดับพลังงานที่สูงขึ้นไป
จากความรู้เรื่องการเปลี่ยนแปลงระดับพลังงานของอิเล็กตรอนการเกิดสเปกตรัม ช่วยให้นีลส์ โบร์ นักวิทยาศาสตร์ชาวเดนมาร์ก สร้างแบบจำลองอะตอมเพื่อใช้อธิบายพฤติกรรมของอิเล็กตรอนในอะตอมได้ โดยกล่าวว่า
“อิเล็กตรอนจะเคลื่อนที่รอบนิวเคลียสเป็นวงคล้ายกับวงโคจรของดาวเคราะห์รอบดวงอาทิตย์ แต่ละวงจะมีระดับพลังงานเฉพาะตัว ระดับพลังงานของอิเล็กตรอนที่อยู่ใกล้นิวเคลียสที่สุดซึ่งมีพลังงานต่ำที่สุดเรียกว่าระดับ K และระดับพลังงานที่อยู่ถัดออกมาเรียกเป็น L , M , N , … ตามลำดับ ต่อมาได้มีการใช้ตัวเลขแสดงถึงระดับพลังงานของอิเล็กตรอน คือ n = 1 หมายถึงระดับพลังงานที่ 1 ซึ่งอยู่ใกล้กับนิวเคลียสที่สุด และชั้นถัดมาเป็น n = 2 หมายถึงระดับพลังงานที่ 2 ต่อจากนั้น n = 3 , 4 , . . . หมายถึงระดับพลังงานที่ 3 , 4 และสูงขึ้นไปตามลำดับ”
แบบจำลองอะตอมของโบร์ พัฒนามาจากการค้นพบสเปกตรัมของอะตอมไฮโดรเจน ซึ่งเป็นอะตอมที่มี 1 อิเล็กตรอน แต่ไม่สามารถใช้อธิบายอะตอมที่มีหลายอิเล็กตรอนได้ นักวิทยาศาสตร์จึงจำเป็นต้องศึกษาค้นคว้าเพิ่มเติมเพื่อเสนอแบบจำลองอะตอมใหม่
แบบจำลองอะตอมแบบกลุ่มหมอก
เนื่องจากแบบจำลองอะตอมของโบร์ (Niels Bohr) มีข้อจำกัดที่ไม่สามารถใช้อธิบายสเปกตรัมของอะตอมที่มีหลายอิเล็กตรอน ได้มีการศึกษาเพิ่มเติมจนได้ข้อมูลที่เชื่อว่าอิเล็กตรอนมีสมบัติเป็นทั้งอนุภาคและคลื่น โดยเคลื่อนที่รอบนิวเคลียสในลักษณะของคลื่นนิ่ง บริเวณที่พบอิเล็กตรอนได้พบได้หลายลักษณะเป็นรูปทรงต่าง ๆ ตามระดับพลังงานของอิเล็กตรอน จากการใช้ความรู้ทางกลศาสตร์ควอนตัมสร้างสมการขึ้นเพื่อคำนวณหาโอกาสที่จะพบอิเล็กตรอนในระดับพลังงานต่าง ๆ พบว่าแบบจำลองนี้อธิบายเส้นสเปกตรัมได้ดีกว่าแบบจำลองอะตอมของโบร์ โดยแบบจำลองอะตอมแบบกลุ่มหมอกกล่าวไว้ดังนี้
1. อิเล็กตรอนมีขนาดเล็กมากและเคลื่อนที่อย่างรวดเร็วตลอดเวลาไปทั่วทั้งอะตอม จึงไม่สามารถบอกตำแหน่งที่แน่นอนของอะตอมได้
2. มีโอกาสที่จะพบอิเล็กตรอนรอบนิวเคลียสบางบริเวณเท่านั้น ทำให้สร้างมโนภาพได้ว่าอะตอมประกอบด้วยกลุ่มหมอกของอิเล็กตรอนรอบ ๆ นิวเคลียส
3. บริเวณที่กลุ่มหมอกทึบแสดงว่าโอกาสที่จะพบอิเล็กตรอนได้มากกว่าบริเวณที่มีกลุ่มหมอกจาง”
การแสดงแบบจำลองอะตอมในลักษณะที่แสดงถึงความหนาแน่นของอิเล็กตรอนทำได้ยาก แต่จะแสดงในลักษณะที่เป็นลูกกลมแทน เช่น ลูกปิงปองหรือลูกกลมพลาสติก เพื่อให้สะดวกต่อการจินตนาการถึงอะตอมของธาตุได้ง่าย
ในปี ค.ศ. 1924 หลุยส์ เดอ บรอยส์ (Lois de Brolie) ให้ความเห็นว่า “ถ้าแสงมีพฤติกรรมคล้ายกับว่าประกอบด้วยอนุภาคเล็ก ๆ (โฟตอน : photon) ดังนั้นอนุภาคขนาดเล็กก็สามารถประพฤติตัวได้ทำนองเดียวกัน คือมีสมบัติเป็นได้ทั้งคลื่นและอนุภาค” ด้วยสมมติฐานนี้ ทำให้โครงสร้างของอะตอมมีความกระจ่างชัดมากขึ้นและสามารถเข้าใจปรากฏการณ์บางอย่างที่ขัดต่อทฤษฎีอะตอมของโบร์ได้ เช่น อธิบายได้ว่าเพราะเหตุใดอิเล็กตรอนจึงไม่ถูกโปรตอนดึงดูดเข้าไปในนิวเคลียส โดยพิจารณาว่าอิเล็กตรอนประพฤติตัวเป็นคลื่นนิ่งรอบนิวเคลียสนั่นเอง และอธิบายได้ว่าในการเกิดพันธะเคมี เพราะเหตุใดอิเล็กตรอนจึงเข้าคู่กันได้โดยไม่ผลักกัน โดยให้พิจารราว่าอิเล็กตรอนเป็นคลื่นซึ่งสามารถเกิดการแทรกสอดกันได้
เมื่อให้อิเล็กตรอนเคลื่อนที่รอบนิวเคลียสในวงโคจรที่เสถียรคือเป็นคลื่นนิ่ง ความยาวของเส้นรอบวงจะมีค่าเป็นจำนวนเท่าของความยาวคลื่นของอิเล็กตรอนนั้น ซึ่งสอดคล้องกับทฤษฎีของโบร์ ระดับชั้นของวงโคจรแบ่งเป็นชุดหลักได้เป็นระดับชั้น (shell) K , L , M , N , O , . . . หรือเรียกว่าระดับพลังงานที่ 1 , 2 , 3 , . . . ตามลำดับโดยที่ระดับพลังงานที่ 1 จะมีค่าพลังงานต่ำสุด นั่นคือจะต้องใช้พลังงานมากที่สุดในการดึงอิเล็กตรอนออกจากอะตอม เนื่องจากมีวงโคจรอยู่ใกล้กับนิวเคลียสมากที่สุด และในแต่ละระดับชั้นจะมีอิเล็กตรอนเป็นจำนวนไม่เกิน 2n2 คือมีจำนวนเป็น 2 , 8 , 18 , 32 ตามลำดับ (เมื่อ n คือระดับพลังงาน) โดยอิเล็กตรอนชั้นนอกสุด (valence electron) จะมีได้ไม่เกิน 8 อิเล็กตรอน
ตารางแสดงระดับพลังงานหลักและระดับพลังงานย่อย
ระดับพลังงานหลัก (n) | ระดับพลังงานย่อย (l) | ชื่อของระดับพลังงานย่อย |
1 | 0 | s |
2 | 0 , 1 | s , p |
3 | 0 , 1 , 2 | s , p , d |
4 | 0 , 1 , 2 , 3 | s , p , d , f |
5 | 0 , 1 , 2 , 3 , 4 | s , p , d , f , g |
ระดับพลังงานย่อย s , p , d , f สามารถบรรจุอิเล็กตรอนได้ 2 , 6 , 10 , 14 อิเล็กตรอนตามลำดับ โดยอิเล็กตรอนจะอยู่ด้วยกันเป็นคู่กระจายอยู่ในออร์บิทัล (orbital) หรือระดับพลังงานที่เป็นค่าโมเมนตัมเชิงแม่เหล็ก (m) ที่ระดับพลังงานย่อย s , p , d และ f กระจายออกมา โดยค่าโมเมนตัมเชิงแม่เหล็กจะมีค่าตั้งแต่ – l ถึง l
ระดับพลังงานย่อย s , p , d และ f จึงบรรจุอิเล็กตรอนได้ 2 , 6 , 10 , 14 อิเล็กตรอน ตามลำดับ ส่วนอิเล็กตรอนที่เข้าคู่กันนั้นจะมีทิศทางการหมุนตรงข้ามกัน (s) เพื่อให้เกิดการดึงดูดทางแม่เหล็กกันได้ จึงมีการหมุนเป็น 2 ค่า คือ +1/2 และ –1/2
ดังนั้น แต่ละอิเล็กตรอนจะมีค่าพลังงานที่ไม่ซ้ำกันเลย พิจารณาจากตัวเลขระดับพลังงานต่าง ๆ ได้แก่ ระดับพลังงานหลัก ระดับพลังงานย่อย ค่าโมเมนตัมเชิงแม่เหล็ก และการหมุนของอิเล็กตรอน ซึ่งเรียกตัวเลขจ่าง ๆ นี้ว่า “เลขควอนตัม” (quantum number) และจะเรียกระดับพลังงานต่าง ๆ โดยระบุระดับพลังงานหลักและระดับพลังงานย่อย เช่น 2s คือระดับพลังงานย่อย s ที่อยู่ในระดับพลังงานหลัก n = 2 เป็นต้น
ตารางแสดงระดับพลังงาน โมเมนตัวเชิงแม่เหล็ก และออร์บิทัล
ระดับพลังงานหลัก (n) | ระดับพลังงานย่อย (l) | โมเมนตัมเชิงแม่เหล็ก | ชื่อออร์บิทัล | จำนวนออร์บิทัล |
1 | 0 | 0 | 1s | 1 |
2 | 01 | 0–1 , 0 , 1 | 2s2p | 13 |
3 | 012 | 0–1 , 0 , 1–2 , –1 , 0 , 1 , 2 | 3s3p3d | 135 |
4 | 0123 | 0–1 , 0 , 1–2 , –1 , 0 , 1 , 2–3 , –2 , –1 , 0 , 1 , 2 , 3 | 4s4p4d4f | 1357 |
สำหรับการจัดอิเล็กตรอนลงในระดับพลังงานต่าง ๆ ของอะตอมนั้นสามารถทำได้ใน 2 ลักษณะ คืออย่างง่าย โดยการจัดเรียงเข้าในระดับพลังงานหลัก และอย่างละเอียด โดยการจัดเรียงที่พิจารราถึงระดับพลังงานย่อยด้วย ซึ่งสามารถอธิบายปรากฏการณ์ต่าง ๆ ได้ดีและแม่นยำกว่า